A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
1
2
3
4
5
6
class Solution {
public:
int uniquePaths(int m, int n) {
}
};
题意:
求路径总数,每次只能往右或往下走
题解:
入门级别动态规划题目。
列下状态转移方程:
设S(i,j)是从pos(0,0)到pos(i,j)的路径总数。
可得:
S(i, j) = S(i - 1, j) + S(i, j - 1)
方程的含义是:
每个格子的路径总数 等于 起点到它左边的格子的路径总数 + 起点到它上方的格子的路径总数。
代码(0ms RunTime):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
int uniquePaths(int m, int n) {
vector<vector<int>> sum(n);
for (int i = 0; i < n; ++i){
sum[i].resize(m);
}
for (int i = 0; i < n; ++i)
sum[i][0] = 1;
for (int i = 0; i < m; ++i)
sum[0][i] = 1;
for (int i = 1; i < n; ++i)
for (int j = 1; j < m; ++j)
sum[i][j] = sum[i - 1][j] + sum[i][j - 1];
return sum[n - 1][m - 1];
}
对于Unique Paths II,改变点是,有些格子变成了障碍物。其实也很简单,上面的代码稍微改下就好了。
代码(4ms RunTime):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int n = obstacleGrid.size();
int m = obstacleGrid[0].size();
vector<vector<int>> sum(n);
for (int i = 0; i < n; ++i){
sum[i].resize(m);
}
if (obstacleGrid[0][0] == 1)
sum[0][0] = 0;
else
sum[0][0] = 1;
for (int i = 1; i < n; ++i)
if (obstacleGrid[i][0] == 1)
sum[i][0] = 0;
else
sum[i][0] = sum[i-1][0];
for (int i = 1; i < m; ++i)
if (obstacleGrid[0][i] == 1)
sum[0][i] = 0;
else
sum[0][i] = sum[0][i - 1];
for (int i = 1; i < n; ++i)
for (int j = 1; j < m; ++j){
if (obstacleGrid[i][j] == 1)
sum[i][j] = 0;
else
sum[i][j] = sum[i - 1][j] + sum[i][j - 1];
}
return sum[n - 1][m - 1];
}
(未经授权禁止转载)
Written on June 27, 2015
博主将十分感谢对本文章的任意金额的打赏^_^